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Analysis of Inductive Dielectric Posts in
Rectangular Waveguide

YEHUDA LEVIATAN, MEMBER, IEEE, AND GAD S. SHEAFFER

Abstract —A rapidly converging moment solution for the complete
analysis of homogeneous dielectric posts of the inductive type in rectangu-
lar waveguide is presented. The moment method approach uses filamentary
currents to simulate both the field scattered by the post and the field inside
the post and in turn point-matches the continuity conditions for the
tangential components of the electric and magnetic fields across the post
surface. The procedure is simple to execute and is general in that inductive
posts of arbitrary smooth shape, size, location, and number, lossless as well
as lossy, can be handled effectively. Data are given and compared with the
few cases for which approximate results are available. The technique is
further applied to other situations where no experimental data or other
analytic results are available.

I. INTRODUCTION

HE STUDY OF inductive waveguide posts has been a

subject of interest to researchers for many years.
Useful references to a portion of a large body of recent
work with metallic posts are given in [1]. Dielectric posts,
however, have attracted less attention, and the few treat-
ments available deal exclusively with circular posts.
Marcuvitz [2] has by variational method calculated the
parameters of the equivalent circuit for a circular dielectric
post discontinuity in a rectangular waveguide. The results
were fairly accurate for dielectric posts of relatively thin
diameter situated at the center of the waveguide, provided
that neither of the equivalent circuit parameters was close
to resonance. Nielsen [3] has overcome some of these
limitations by developing a theory based upon the method
of expanding the field in a sum of modes. His method, too,
is applicable only to circular centered posts but is extended
to posts of any size and complex permittivity. Nielsen also
improved the results near resonance. Recently, Araneta
et al. [4] presented a higher order variational model for
centrally placed dielectric rod of circular cross section.
Their model has no restrictions on the rod diameter, and it
also shows an improved representation near resonance. A
subsequent paper by Sahalos and Vafiadis [5] suggested a
procedure similar to that given by Nielsen [3] using a
circular rather than rectangular interaction region. Their
model permits the analysis of circular posts in the middle
of a rectangular waveguide and renders the results near
resonance very accurate. The main purpose of this paper is
to devise a procedure which is accurate, simple, and gen-
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eral in that inductive posts, lossless as well as lossy, of
arbitrary smooth shape, size, location, and number can be
handled effectively. The study of dielectric posts is not
solely of academic interest; it has practical importance as
well. Nowadays, several high-permittivity, high-Q, temper-
ature-stable, low-cost ceramic compositions have been de-
veloped. With this combination of desirable properties,
they can replace conventional copper and Invar waveguide
filters in almost all applications. In fact, dielectric filters
have already been used in radio system ranging from 1.7 to
11 GHz, and their application is expected to grow rapidly
in the future [6].

A short while ago, the problem of electromagnetic
scattering by perfectly conducting inductive posts in rect-
angular waveguide was facilitated via an efficient and
fairly simple moment solution [7], [8]. The suggested idea
is to use a filamentary current as an approximate current
source producing the field scattered by the post and a
point-matching procedure for the boundary condition at
the post surface. Specifically, the post is replaced by a set
of unknown current filaments placed on or inside the post
surface, the latter being usually preferable since it yields a
more rapidly converging numerical solution. A point-
matching of the boundary condition at the post surface is
imposed and the unknown current filaments are de-
termined. These currents in turn are used to evaluate other
subjects of interest, such as the equivalent circuit parame-
ters and the actual surface-induced current.

In this paper, attention is focused on the class of dielec-
tric inductive posts. The basic formulation introduced
deals exclusively with a single inductive dielectric post.
The formulation for structures that seem to be more
complicated, such as the post array, requires only trivial
modification of the basic one and, for the sake of brevity,
is not presented in the following analytical exposition. Qur
main objective is to extend the above-described analysis to
handle homogeneous dielectric inductive posts using a
multifilament current model. In treating inductive dielec-
tric posts, one option is to utilize the standard procedure,
which expands the actual polarization current induced in
the dielectric in terms of suitable basis functions and then
point-matches the constitutive relationship at points inside
the post. This approach, however, involves a Fredholm
integral equation of the second kind in which the unknown
current appears both under the integral sign and explicitly
outside the integral sign. Therefore, filaments would not be
suitable expansion functions if the point-matching proce-
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Fig. 1. Inductive dielectric post of arbitrary shape in a rectangular

waveguide.

dure is to be used for testing. In this case, one may expand
the polarization current in terms of pulse functions and
use point matching for testing. As a matter of fact, this
approach is currently being considered by Hsu and Auda
[9]. Such a procedure, however, involves a volumetric
integral equation which, in conjunction with the rather
slowly converging Green’s function, typically associated
with waveguide discontinuity problems, would seriously
tax the computing system. The other option is to employ
two separate sets of filamentary currents as approximate
current sources which simulate, respectively, the field
scattered by the post and the field inside the post and then
point-match the continuity conditions for the tangential
components of both the electric and the magnetic field
across the post surface. This latter approach seems to be
more favorable and will be the one considered in this
work.

II. PROBLEM SPECIFICATIONS

The physical configuration of the problem under study
is shown in Fig. 1, together with the coordinate system
used. Here, we consider a cylindrical waveguide of rectan-
gular cross section in which an inductive dielectric post is
situated. The width of the guide is a and its height is b.
The guide walls are perfect conductors and it is filled with
a homogeneous medium of constitutive parameters ., and
¢, The post is of arbitrary smooth cross section and is
composed of homogeneous material with permeability p,
=p,, and permittivity €,. Dissipation in the waveguide
region is not accounted for; thus, p, and e, are consid-
ered real. For future convenience, we refer to the wave-
guide region external to the post as region W, to the post
region as region P, and to the post surface as S.

The wave incident upon the post is the dominant TE,,
mode traveling in the positive z direction. An exp( jw?)
time dependence is assumed and suppressed. We confine
our consideration to a frequency band within which the
TE,, is the only propagating mode. Because the electric-
field vector of the incident mode has only a y component,
which is independent of y, and since the properties of the
post, both physical and electrical, are uniform along the y
direction, the total field in the waveguide does not vary
with y. The problem thus reduces to a two-dimensional
one.

Our main goal is to determine the field scattered by the
post. By definition, the field scattered by the post is the
actual field in the ambient waveguide region minus. the
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Fig. 2. Simulated equivalence for region W.
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Fig. 3. Simulated equivalence for region P.

incident field. Once the scattered field is known, a calcula-
tion of the scattering matrix and subsequently of the
equivalent network parameters for the post two-port junc-
tion is straightforward.

IIL.

We now divide the original situation into two simulated
equivalent situations. In the first situation, we simulate the
electromagnetic field in the waveguide region W. In the
second situation, we simulate the electromagnetic field in
the post region P.

In the simulated equivalence for region W shown in Fig.
2, the post is replaced by a fictitious surface current
distribution J* placed on a closed surface enclosed in S.
This current is y-directed and independent of the spatial y
direction. J* is treated as a source current in a homoge-
neous waveguide region filled with a medium of con-
stitutive parameters p, and €,. In Fig. 2, (E¥,H") is
the electromagnetic field due to the current J¥, and
(E™, H**) is the electromagnetic field of the incident
TE,, mode, both calculated with the post absent. The total
field (E¥ + E™™, H* + H™) in region W in the simulated
equivalent situation for region W is simulating the field in
region W in the original situation.

In the simulated equivalence for region P shown in Fig.
3, the waveguide region surrounding the post is replaced
by a fictitious surface current distribution J? placed on a
closed surface enclosing S. This current is y-directed,
infinite in extent in the y-direction, and independent of

SIMULATED EQUIVALENT SITUATIONS
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the spatial y-direction. J? is treated as a source current in
an unbounded space filled with homogeneous material
identical to that composing the post. The field (E?, H?) in
region P in the simulated equivalent situation for region P
shown in Fig. 3 is simulating the field in region P in the
original situation.

Note that in both Figs. 2 and 3, filamentary currents J*
and J? are depicted, respectively. These are already par-
ticular choices of the approximations for J* and J? that
will be introduced below and used thereafter.

The relationship between the electromagnetic fields
(E¥+ E™ HY + H™) and (E?, H?) in the simulated
equivalent situation shown in Figs. 2 and 3, respectively, is
dictated by the boundary condition at the post surface in
the original problem shown in Fig. 1. Specifically, the
tangential components of the electric and magnetic fields
must be continuous across S. This leads to the operator
equations

AX(EY—-E?)=—AXE™ on$
AX(H"—H?)=-AxXH™ on S

(1)
@)

where 7 is a unit vector normal to the post surface S and
pointing towards the waveguide region, as shown in Fig. 1.

Evidently, if current distributions J" and J? were found
which satisfy conditions (1) and (2), then (E¥, H") would
be the exact field scattered by the post and (E?, H?)
would be the exact field inside the post. With this goal in
mind, J¥ and J? are first approximated by a finite
number of expansion functions. Specifically J* is ap-
proximated by a set of N* y-directed filaments of yet
unknown constant current {1,”}, i=1,2,--- N, situated
on a contour inside S as shown in Fig. 2, and J? is
approximated by a set of N? y-directed infinitely long
filaments of yet unknown constant currents {I7}, i=
1,2,---, N?, situated on a contour outside S as shown in
Fig. 3. It is noteworthy that both the inner contour on
which the {I} are situated and the outer contour on
which the {7} are situated are arbitrary as far as the
formulation is concerned. The question of selecting con-
tours suitable for numerical computation will be discussed
in Section V. Next, the two continuity conditions (1) and
(2) are either strictly imposed at N*=(N™ + N?) selected
points on S or are imposed, in the least-square-
error sense, at N*>1(NY 4+ N?) selected points on . The
result is a matrix equation which can be subsequently
solved for {1} and {17 }. Once the currents are known,
approximate values for the various fields and other param-
eters of interest can be readily found.

It should be remarked that from a strict mathematical
point of view, we cannot, in general, guarantee the ex-
istence of current distributions J* and J? on arbitrarily
selected inner and outer surfaces which produce the true
fields in the respective regions. The existence question,
which is an important one, is currently under investigation
and will be reported in a forthcoming paper. For present
purposes, suffice it to say that although (1) and (2) might
not have a mathematically admissible solution for certain
choices of inner and outer surfaces, they can nevertheless

constitute a suitable formulation for a numerical solution.
The reason for this is intimately related to the fact that the
finite set of impulsive basis functions defined on the
moved-away surfaces can be interpreted as a finite set of
entire domain functions defined on S. In this sense, our
basis is as appropriate as other entire-domain bases on S
commonly employed in moment solutions for scattering
problems. The advantage here lies in the representation of
smooth quantities on S using impulsive sources whose
fields are easily evaluated.

IV. FORMULATION

In this section, expressions for the various electromag-
netic fields introduced in the preceding section are pre-
sented.

A. Expressions for E™ and H™

The incident electromagnetic field (E™°, H'™) is ex-
pressed as

inc __ inc
E uyEy

inc _ inc inc
H =y H™+uy,H,

3)
(4)

where

, X
E}> =sin — e Ikaz

(5)

a
k TX
: z1 . g
Hme=— sin — e Vka? (6)
KM a
. a LT
e = — - cos ——e 7kaZ, (7
Jjk,m,.a a

Here, k,, = wyp,¢,, and 1, =yn /€, are, respectively, the
wavenumber and intrinsic impedance in the waveguide
region. Also, k,; is the modal wavenumber of the propa-
gating TE, mode given by

(3)

B. Expressions for E¥ and HY

The electromagnetic field (EY, H") due to the current
filaments I1*,i=1,2,--., N*, radiating in region w with
the post absent is expressed as

(9)

NW
E*=u,) E!

i=1
(10)

NV NY
H”=u, ) HY+u, ) H.
=1 i=1
In (9)
kwnw tw iad 1
1y=____ Z k

a m=1 "zm

max] | mwx

e Tkemlz— 2

(1)

is the intensity of the y-directed electric fields at observa-
tion point (x, z) in region W due to current filament 1*
situated at (x), z}¥). Here k,,, are the modal wavenumbers

[ AR

sin sin



LEVIATAN AND SHEAFFER: INDUCTIVE DIELECTRIC POSTS IN RECTANGULAR WAVEGUIDE 51

given by

ko= J (# —K2 (12)

a
for m #1 and by (8) for m =1. Unfortunately, the series in
(11) converges slowly and is therefore not convenient for
computation. Following the approach outlined in [5], we
convert it to

E, =S, + Su- (13)

where S, , is the rapidly convergent summation

e—jk,m|z~z,““| e —(mn/a)|z—z)|

L.}
wnw1

Szy == a E k .m‘ﬂ
=1 m _]_
. omax)  omax
-sin sin (14)
and S ™ is the auxiliary series
kg > & 1 max)
Sy =- p X ma S
m=1 — j——
a
max
.sin e~ (mr/olz=z!l (15)

that, when summed in closed form, reduces to

jkwanjw 1_Dt
'aux=_______R
S5 e e{ln( 1-c, (16)
with
.W .
C,=eXP(J;[(x—x,w)+]Iz—zlwl]) (17)
™
Df=exp(j;[(x+x,-w)+j|z—z,~w|]). (18)
In (10)
Ir Z maxy  mmx
H)=+— E sin sin - g Ikemlz =2 (19)
a pm—1 a
IY & mm | mwx) max .
H7=— - sin cos e Jkamlz— 2| (20)
a =1 szma a a

are the x and z components of the magnetic field at
observation point (x, z) in region w due to current fila-
ment I situated at (x, z}). The upper sign in (19) is for
z >z} while the lower sign is for z < z}”. The series (19)
and (20) are also slowly converging. Following the scheme
outlined in [6], we convert them to

Hi‘; = Stx + St?cux (21)
Hy =8, + 8™ (22)
where §,, and S, are the rapidly convergent summations
Iy
S.=++— Y (efjk,mlz—zr| - e—(mw/anz—zm)
a p=1

max) mmx

(23)

sin

-sin

and

e jkzmlz—zlwl — e_(m'”/a)lz—zlwl

Z

I o0
=— X
a =1

m

]k

max) max

-sin

(24)

COS

Here $3* and S3™ are the two auxiliary series

S = + — Z sin Ty sin % g - (ma/lz—z11 (25)
Iy = max) mmx v
2= —— ) sin — cos e~ (mm/alz== - (26)
a 4 a
that, when summed in closed form, reduce to
Saux i‘i { ..___C:_.?_ } (27)
i (1-c)1-D,)
N A D, -C,
oo

with C, and D, given, respectively, by (17) and (18).

C. Expressions for E? and H?

The electromagnetic field (E?, H?) due to the current
filaments I7,i=1,2,--, N?, radiating in an unbounded
space of constitutive parameters p, and €, can be ex-
pressed as
(29)

N?
E’=u,Y E}
i=1

NP NP
=u, Y Hf,+u ) Hf (30)
=1 i=1

In (29)

E}= (31)
is the intensity of the y-directed electric field at observa-
tion point (x, z) in region p due to current filament I7
situated at (x/, zf). Here, k,= w‘/ﬁ;e_; and m,=/p, /€,
are the wavenumber and intrinsic impedance, respectively,
of the medium in region P. Also, H{® is the Hankel
function of the second kind of zero order and r# is given
by

k.n,I?
- J_‘,{L”Héz)(kprip)

r,P=\/(x—x{’)2+(z—z{’)2.

(32)
In (30)

P_kpllp(z—zlp)

ix 4jr,p Hl(z) ( kprip)

(33)

and
HP = M

" 4jr?

are the x and z components of the magnetic field at
observation point (x, z) in region p due to current fila-
ment I? situated at (x?,z?). Here, H{® is the Hankel
function of the second kind of first order.

H(k,r?)

(34)
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D. Evaluation of the Unknown Currents {1} and {I}F}

Following the procedure outlined toward the end of
Section I1I, we reduce the functional conditions (1) and (2)
to a matrix form in which the various matrices are inter-
preted in terms of generalized network parameters. The
result is

(35)

where

(36)

(37)

(38)

[Z]is a 2N’ by (N + NP?) matrix called the generalized
impedance matrix, I is an (N" + N7)-clement column
vector called the generalized unknown current vector, and
¥ is an 2 N*-element column vector called the generalized
voltage source vector. In (36), [Z”] is an N° by N* matrix
whose (/, i) element is the electric-field intensity E/) due to
a filament 7" of unit current evaluated at (x,, z;) on S.
Similarly, [Z?] is an N*® by N? matrix whose (/, i) element
is the negative of the electric-field intensity E/, due to a
filament I7 of unit current evaluated at (x,, z;) on S. The
matrix [Z}’] is an N* by N* matrix whose (/, /) element is
the tangential magnetic-field intensity due to a filament 1"
of unit current evaluated at (x,, z,) on S. Similarly, [Z}] is
an N*® by N? matrix whose (/, i) element is the negative of
the tangential magnetic-field intensity due to a filament I7?
of unit current evaluated at (x,, z,) on S. In (37), [ [¥ is an
N™-element column vector whose ith element is J*. Simi-
larly, I” is an NP-element column vector whose ith ele-
ment is [7. Finally, in (38), V and V,, are N°’-element
column vectors whose /th elements are, respectively, the
negative of Eyi"IC and the negative of the tangential mag-
netic-field intensity at observation point (x,, z;) on S.

Having formulated the matrix equation (35), the un-
known current vector I can be solved for in a straightfor-
ward manner. If the boundary conditions are forced at
N*=1(N"+ NP) selected points on S, then [ Z] is usually
one-to-one and onto.! In this case, [ Z] is invertible and the
unique solution to (35) is readily given by

=[z]"'V (39)

where [Z]™! is the inverse of matrix [Z]. If, on the
other hand, the boundary conditions are forced at N* >}
(NY 4+ NP) selected points on S, then [Z] is usually one-
to-one but not onto.!

In this case, unless V' is in the range [Z], there is no
exact solution to (35). If ¥ is not in the range of [Z], we

Y[ Z] is one-to-one if [ Z] does not assign more than one vector T in the
domain of [ Z} to a single vector V in the range of [ Z] [ Z] is onto if every
vector V in the range of [ Z] is associated with at least one vector [ in the
domain of { Z].

pursue the smallest least-square-error solution to (35), that
is, the one w_l}ich minimizes the standard norm of the
vector [ Z]1-V. This solution of (35) is known to be

=((Z1*(z]) (217 (40)

where the matrix ([Z]*[Z]) '[Z]* is the pseudoinverse of
the matrix [Z]. Here, [Z] is the transpose of [Z] and the
asterisk denotes complex conjugate.

E. Scattering Matrix and Equivalent Circuit

Once the unknown current vector is derived from either
(39) or (40), one can readily proceed to evaluate the
scattering matrix [S”] for terminal planes z=0" and
z=07, which constitute the post two-port junction. For
this purpose, consider two reference planes 7; and 7,
placed, respectively, on z=z, z; <min{z[z€S}; z=
zr, zr,> max{z|z €S}. Assume also that 7} and 7, are
sufficiently distant from the post surface so that contribu-
tions of nonpropagating modes to the fields there may be
neglected altogether. Further, assume that the distance to
each of the planes from the z =0 plane is an integral
multiple of the guide wavelength. In accordance with this
choice, the scattering matrix for planes T; and T, becomes
identical to [S7]. Hence, the elements S{; and S of the
latter are derivable in term of the following defining
equations:

Bl
Sp=—r+ (41)
11 Ey |T1

ElllC+ES
Sﬁz( y J/)‘Tz (42)

E‘;HC|712

where E inc}Tl and E™|;, are, respectively, the incident
electric-field intensities at planes T, and T,, and E}|7, and
Ej|r, are, respectively, the intensities of the y- d1rected
scattered electric field at planes T; and 7,.

To evaluate E}™| and E;™|;, one simply applies (5) to
planes T; and 7, obtaining

X
E}|, = sin — -(43)
. X
B}y, =sin—. (44)

To compute Ej|, and E|;, one can employ two alterna-
tive but, in a sense, equivalent schemes. One option is to
simply evaluate the scattered electric field by applying (9)
to T; and T, while retaining only dominant-mode contri-
butions. The result is

w

Nk X TX
W”’w H . 13 . —_ w
Ellp.= Y — sin sin —e/kaz’ (45)
v'n k
=1 a4 a
N ko Y v
n X X
witw™il . i . w
Ed|,. =) — sin sin —e/*a%" (46)
1T,
1 k,a a

The other option is to first calculate the total electric field
in the post region by (29), which determines the polariza-
tion current density JP* within the dielectric body accord-
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ing to

(47)
Treating this polarization current as a source current in a
homogeneous waveguide region which generates the

scattered field and applying the result to 7} and 7, while
retaining only dominant-mode contributions, we obtain

JPo = uyJP°1= jw(ep —¢,)E?.

TX
k.m,, sin —
= 1
Ejlp=-—-% ] TP (3, 27)
post
Cross section
. 7Tx, k ’
-sin —e*aZ dx' dz’ (48)
X
k,m,, sin —
- 1
Elez—— ff Jre (xl’z’)

post

cross section
4

TX
-sinTe/kﬂz'dx’dz'. (49)

We turn to the remaining elements of the scattering
matrix. In most practical situations the junction is recipro-
cal and therefore S{,=Sf. To determine S%, one can
construct a new situation by rotating the post by 180°
around the x-axis and then evaluate Sf, according to the
preceding procedure. Now, Sf, in this new situation is
identical to S4, of the original situation. In many cases,
however, there is no need whatsoever to repeat the mo-
ment procedure in order to calculate S%. In these cases,
S4, is readily expressible in terms of Sf; and S§. For a
post symmetric with respect to the z=0 plane, S is
clearly equal to Sf;. For a lossless junction, [S?] is a
unitary matrix, that is

[s7]7 = [$7]* (50)
or explicitly
IShI +155/2 =1

NARAN AR

(51)
(52)
and
SESH + SESE =0.
In view of (53), we find that
StiSh
&

(53)

Sp=- (54)

A knowledge of the scattering matrix [S?] permits a
rather straightforward calculation of its corresponding im-
pedance matrix [ Z”]. The relation between the two matrices
is

127 == (s 1+ - (59)

where [U] is the unit matrix and Z,=k,n,, /k, is the
characteristic impedance of the propagating TE,, mode.
As a matter of convention, this impedance matrix is pre-
sented by the lumped T-network shown in Fig. 4. Note

Zp=Rp*Xp Ze=RetiXe
o o
% Z4=Rg*|Xq %
o —_0
2:=0" z=0"

Fig. 4. Typical equivalent circuit for the inductive post discontinuity.

that if the post is symmetric with respect to the z = 0 plane
we have

(56)

V. NUMERICAL RESULTS

Computer programs have been prepared to carry out the
analysis of the preceding sections. Listings are included in
[10}. The programs are general in that inductive posts of
arbitrary shape, location, and complex permittivity can be
handled.

To check the program, we consider the few cases for
which data are available. Hence, we focus our attention on
the case of a circular dielectric post of diameter denoted
by d (radius denoted by r) centered at (x, z) = (a/2,0) in
a hollow (u, =p,,¢€, =¢,) waveguide, which has been
treated by Marcuvitz [2], Nielsen [3], and recently by
Araneta et al. [4] and Sahalos and Vafiadis [5]. Another
means of error estimation is available if it is stipulated that
the post is lossless. In this case, [S?] is a unitary matrix
and conditions (51) through (53) must be satisfied simulta-
neously. Finally, a few limiting cases are considered and
the degeneration of the results to the proper values is
confirmed.

We stated earlier that if the boundary conditions (1) and
(2) are satisfied by the Maxwellian and source-free (in
their respective regions) fields (E¥, H") and (E?, H?),
then these fields are the true fields. Here, however, we
force these conditions to be obeyed only at a finite number
of selected points on the common boundary between re-
gions W and P. Naturally, one can question the behavior
of the fields on the boundary between the matching point.
This is because they can in general be quite different from
what is required by the boundary conditions, thereby
rendering the results for the field values in the two regions
inaccurate. To address this question, we carry out a study
of the convergence of the boundary condition errors AE
and A H defined by

ixX(EY+ E™ —EP)| S
=|'l ( — )IO (57)
|E™] max
Ax(H"+H™ - H?)| S
g X H=— H7) 59

as a function of the azimuthal angle ¢ for a centered post
of ¢,=4¢,, d/a=02, and a=)\/14. We examine the
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Fig. 5. (a) Boundary condition error AE versus ¢ for a centered
circular post (€, =4ey, d/a=02, a=X/1.4) for various numbers of
sources and matching points N. (b) Boundary condition error AH
versus ¢ for a centered circular post (¢, = 4¢€,, d/a=0.2, a=XA/1.4)
for various numbers of sources and matching points N.

special choice of an equal number of inner sources N*,
outer sources N”, and matching points N*. We denote this
common number by N. The inner sources { I, } are placed
on a circular surface of radius r” =0.5r and the outer
sources {I/} are placed on a circular surface of radius
r? =2r. Both the sources and the matching points are
evenly spaced on their respective surfaces. The angle ¢
here is the azimuthal angle in an auxiliary cylindrical
coordinate system with a z axis coinciding with the post
axis and an x axis coinciding with the x axis in Fig. 1.
Hence, the interval from 0° to 180° on ¢ is in the
“shadow” region of the post surface, while the interval
from 180° to 360° on ¢ is in the illuminated region. Plots
of AE and AH for various values of the parameter N are
presented in Fig. 5. Cases considered are N =38, 10, 12,
and 14. The boundary condition errors AE and A H which,
by conditions (1) and (2), are zero at the matching points
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Fig. 6. (a) Normalized reactance X, /Z, versus the number of sources
and matching points N for a centered post (¢, =4¢y, d/a=02,
a=2A/14). (b) Normalized resistance R,/Z, versus the number of
sources and matching points N for a centered post (¢, = 4¢4, d/a =02,
a=\/14).

increase smoothly and reach a maximum on the surface §
between the points. As the number of matching points
increases, the maxima of AE and AH on the surface fall
sharply. Note that even for N as small as 14, the maximum
of AH, which is much larger than the maximum of AF, is
smaller than 0.1 percent. The nature of convergence seen
here is similar in other cases involving posts of other radii
and permittivities and in cases where the sources are
placed on other surfaces. The rate of convergence, though,
may be different. To give some additional information on
the convergence as the number of expansion functions and
matching points is increased, Fig. 6 depicts plots of the
normalized reactance X,/Z, and the normalized resis-
tance R,/Z, versus N for the post of Fig. 5. Note that
here for N as small as 14, the numerical solution for
X,/Z, converges to an adequate engineering solution,
while the solution for R, /Z, converges appropriately to
zero, as expected in this lossless case. The rate of conver-
gence is similar for the plots of X, /Z, and R, /Z,, which
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are not shown here, and of a similar nature in other cases
as well.

The choice of the filamentary sources location may also
affect the rate of convergence. Studies have shown that the
results converge faster to a limiting value when the sources
are situated on contours concentric with § and of figures
similar to S. For the circular post, this implies that the set
{1} is placed on a circular surface of radius r,”, while the
set {17} is placed on a circular surface of radius rf. In
addition, it is found that any selection of r* between 0.2r
and 0.8r and of r? greater than 1.5 virtually does not
affect the rate of convergence. In contrast, the rate of
convergence deteriorates when the inner sources approach
either the post center or the post surface, and when the
outer sources approach the post surface.

So far, we brought up cases in which the two continuity
conditions (1) and (2) are strictly imposed at the matching
points on S. Another option attempted was to impose
these conditions in the least-square-error sense at selected
points on § with a view to obtaining similar accuracies
using fewer sources, thereby gaining the advantage of
inverting smaller matrices. For example, the same accuracy
stabilized with N = N? =14 sources, and N*® =14 match-
ing points in a strict solution of the post of the previous
case is stabilized with N*¥ = N? =12 sources and N°=16
matching points in a least-square-error solution. Notice
that while the former requires an inversion of a 2828
matrix, the latter requires only an inversion of a 24X24
matrix.

In summary, it should be apparent that it is impossible
to state a rule of thumb as to the choice of the source’s
location and number, since the number of parameters
involved is very large. However, it is evident and under-
standable that a large post of high permittivity will natu-
rally require more sources than a smaller one of lower
permittivity in order to achieve the same level of accuracy.
We wish to emphasize that even for choices less than
optimal in the source’s location, the solution eventually
converges to the appropriate limiting values as the number
of sources and matching points increases. This conver-
gence might, however, be less rapid compared with other
choices. Clearly, in any event one should test the solution
by increasing the number of sources and matching points
and comparing the results. If the results are sufficiently
close, the solution is taken as satisfactory. Attention should
also be recalled to the summations in (14), (23), and (24).
As a practical necessity, a truncation of these infinite series
is required. With this in mind, the program divides each
series into ten-term sets and subsequently sums up these
sets as long as the ratio between the sum of the last
ten-term set and the total sum of all the sets considered up
to that point is larger than a suitably prescribed threshold.
As stated earlier, the resultant error can be quantitatively
estimated, in the loss-free case, from the unitary conditions
(51)—(53). Finally, with regard to the two options (45), (46)
and (48), (49) mentioned to compute Ej, studies have
shown that they give identical results. For the final results
presented in this paper, we favor the simpler one and
compute E; using (45), (46).

TABLE I
COMPARISON BETWEEN COMPUTED NORMALIZED REACTANCES
X,/Zy AND X, /Z, VERSUS ‘/ep /€0 AND MARCUVITZ’S
DATA FOR A CENTERED POST (d/a=0.1,a=A/1.4)

Marcuvitz's data
Reference [2] Our results
l 2 Xa Xp Xa Xp
€ Zo Zo Zo Zo
2 -312 000093 | -3.187 0.000968
3 -103 000262 | - 1.050 000270
4 -0438 00053 -0.452 000543
5 -0 187 0.0092 -0196 0.00957
6 -0057 00153 -0.0634 0.0159
7 0.028 0.0249 0.0132 0.0263
8 0.063 0.042 00577 00452
9 0.083 0.078 00743 00891
10 0.05 0.2l 0.00185 0.294
1" 06 -087 0.378 -0409
12 03 -017 0269 -0.143
13 028 -o.1 0270 -0.0941
14 029 -0079 0.292 -00732
15 034 -0.066 0.340 -0.0614
10}
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Fig. 7. Reflection coefficient magnitude |Sfj| versus €, /¢, for a
centered post (d/a=01, a=A/1.4).

In view of the large number of parameters involved in
the general procedure, we will limit the data display to
only a few illustrative examples. A comparison between
our computed normalized reactances X,/Z; and X, /Z,
versus /e, /€, , and Marcuvitz’s data [2] for d /a = 0.1 and
a=X\/1.4 is presented in Table I. As expected, the results
agree with each other fairly well for many values of e, /¢,
but differ significantly in cases where X, /Z, is close to
resonance, for which Marcuvitz’s results, as pointed out by
Marcuvitz himself, do not apply. The behavior of the
corresponding reflection coefficient for this case has been
recently investigated by Sahalos and Vafiadis [5], who
compared their data with those of Marcuvitz [2], Nielsen
[3], and Araneta et al. [4]. It is observed from Fig. 4 of [5]
that the various results agree with each other in many
regions but appear to be different near the resonance. Our
computed results, depicted in Fig. 7, concur with Sahalos
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Fig. 8. (a) Three-dimensional picture of the polarization current distribution induced in a centered dielectric post of radius
r=01a, a=A/14, and permittivity ¢, =10¢,. (b) Three-dimensional picture of the polarization current distribution
induced in a centered dielectric post of radius r=0.1a, a=A /1.4, and permittivity €, =100¢,. (¢) Three-dimensional
picture of the polarization current distribution induced in a centered dielectric post of radius »r=0.2a4, a=A /1.4, and

permittivity €, =100¢,.

and Vafiadis’s data. Our numerical procedure also shows
the resonant condition at a dielectric constant of ¢, =
112.5¢,,. It should be emphasized that our method is ap-
parently more powerful since it is not limited to the case of
a circular centered post but is rather general in that posts
of arbitrary smooth shape, size, location, and number can
be handled effectively. _

Another parameter of interest is the polarization current
distribution within the dielectric post. This current can be
readily evaluated via (47) once the electric field E? due to
the current filaments I?, i=1,2,---, N?, is known. II-

lustrative three-dimensional pictures of the magnitude of
JP°! for various cases are shown in Fig. 8. It should be
emphasized that the convergence of the results for the field
values in each region to their limiting values as the number
of sources and matching points is increased is similar to
the convergence of the boundary condition errors to zero.
In the results for the polarization current calculated from
the field value in region P, the limiting value is reached
within less than 0.1-percent error. Note that the polari-

- zation current intensity varies in magnitude and that these

variations become appreciable as the post gets thicker and
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Fig. 9. (a) Normalized reactance X, /Z, versus €, /e, for a centered
lossy post (¢, =4¢y, a=Ar/14). (b) Normahzeg resistance R,/Z,
Versus €, /€, %or a centered lossy post (€, = 4¢€y, a=M\/1.4).

as its permittivity becomes higher. This behavior is due to
the variation of the electric-field intensity in the dielectric
region to which JP* is related through (47). The variation
of the electric field in the dielectric region is not surprising
as it can be found in similar but nevertheless different
situations involving scattering by dielectric cylinders [11],
[12]. Thus, poor accuracy is to be expected if the polar-
ization current is calculated approximating the electric
field in the dielectric by the slowly varying field of the
incident TE,, mode. Obviously, if the fields scattered by
the post are computed from these current distributions as
source currents and from the inner filamentary currents as
source currents, virtually identical results are obtained.
Lossy dielectric posts are handled by the use of complex
permittivities. Hence, we let ¢, =¢, — je, with ¢, and ¢},
real. Figs. 9 and 10 show, respectively, plots of normalized
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Fig. 10. (a) Normalized reactance X, /Z, versus ¢, /¢, for a centered

lossy post (¢, =4¢g, a=A/14). (b) Normahzecf resistance R, /Z,
Versus ¢, /€, for a centered lossy post (e, =4¢y, a=A/1.4).

reactances X,/Z, and X, /Z, and resistances R ,/Z, and

R,/ ZO as a function of € 1; for centered post of d/a=0.1,
with €, =4€, at A /a=1.4. Note that in the two limiting
cases, namely, € ;, -0 and € — oo, the results for the
lossless post shown in Table I and for the perfectly con-
ducting post given in [7] are, respectively, recovered. Fig.
11 exhibits the variation of the left-hand side of (51) as a
function of €, for the lossy post. The graph shows that in
the two above-mentioned limiting cases, the value 1 is
approached in accordance with the power conservation law
that must be satisfied in these particular instances. Ob-
serve that in this situation post losses appear to have
reached a peak value at €, =19.5¢,. Notice also the abrupt
change in the magnitude of each of the reactances and
resistances of Figs. 9 and 10 that occurs at €, =19.5¢,,
which results in the sharp falloff in post losses seen in Fig.
11.

The extension of the preceding formulation to encom-
pass cases involving multiple-post, say M, obstacles is
straightforward. In these cases, the field in the waveguide
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Fig. 12. Transmission coefficient versus frequency for a two-clement
centered dielectric post configuration (e, =4e,y, d/a=0.1, a=\/14).

is simulated by the field of M sets of sources, each situated
inside its corresponding post. The field inside each post is
simulated, as before, by the field of an appropriate set
situated outside that post. Boundary conditions must be
subsequently applied at selected points on the M post
surfaces. Fig. 12 shows computed transmission coefficient
data for a two-element centered dielectric post (A /a =1.4,
d/a=01, ¢, = 4¢;) as a function of frequency. Here, the
spacing between the post axes along the z direction has
been determined to yield resonance (complete transmis-
sion) at f, neglecting the higher order mode interactions
between posts, that is, obtained by cascading single-post
equivalent circuits. The curve, however, corresponds to
results obtained, including high-mode interactions as well.
Observe that there is no appreciable difference between
the resonance location in the curve and the computed one.

This is due to the fact that in the case shown we are
dealing with thin posts of relatively low permittivity; thus,
higher order mode interactions may be neglected. In other
cases, however, such as thick posts of high permittivity
which render the frequency response high Q, the higher
modes must be accounted for.

VI. DIisCUSSION

A complete analysis of dielectric post structures of the
inductive type in rectangular waveguides has been facili-
tated via a simple, accurate, rapidly converging moment
procedure. The solution uses one set of filamentary cur-
rents to simulate the field scattered by the post, another set
to simulate the diffracted field inside the post, and a
testing procedure for imposing the continuity conditions
for the tangential components across the post surface. The
procedure is general in that inductive dielectric posts of
arbitrary smooth shape, size, location, and number can be
handled effectively. Lossy posts have also been considered.

The computed results show very good agreement with
Sahalos and Vafiadis’s data. They also give proper results
in several limiting cases. In the absence of the dielectric
post (e,=¢,), Sf; and S§ approach, respectively, the
correct values 0 and 1. Also, as Im(e,) = — oo, the results
of [7] for the perfectly conducting post are recovered. The
advantage of our method over the previously suggested
ones is its generality. While these methods are applicable
to a single centered post of circular cross section, our
method can handle an array of any number of posts,
lossless as well as lossy, of arbitrary smooth shape and
location.

The accuracies achievable by this theoretical model are
indeed excellent with respect to engineering needs. The
suggested procedure is applicable to a variety of micro-
wave dielectric discontinuities of the inductive type and
can thus prove useful in the analysis and synthesis of
waveguide components built of newly developed ceramic
compositions.

An extension to encompass dielectric discontinuities of
the dual-capacitive type requires changes but appears to be
straightforward. Since each post is uniform along the x
axis, and since the exciting mode has an x component of
magnetic field that varies as sin(7x/a) and no x compo-
nent of electric field, only TE,, to x modes will be excited
in the waveguide. Thus, one can readily use sets of x-
directed magnetic current filaments that vary as sin(w x /a)
to simulate the fields scattered by the post and the field
inside the post, and subsequently match the boundary
conditions in some x = constant plane within the wave-
guide.
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