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Analysis of Inductive Dielectric Posts in
Rectangular Waveguide

YEHUDA LEVIATAN, MEMBER, IEEE, AND GADS. SHEAFFER

Abstract —A rapidly converging moment solution for the complete

analysis of homogeneous dielectric posts of the inductive type in rectangu-

lar waveguide is presented. The moment method approach uses filamentary

currents to simulate both the field scattered by the post and the field inside

the post and in turn point-matches the continuity conditions for the

tangential components of the electric and magnetic fields across the post

surface. The procedure is simple to execute and is generaf in that inductive

posts of arbitrary smooth shape, size, location, and number, Iossless as well

as 10SSY, can be handled effectively. Data are given and compared with the

few cases for which approximate results are available. The technique is

further appfied to other situations where no experimental data or other

analytic results are available.

1. INTRODUCTION

T HE STUDY OF inductive waveguide posts has been a

subject of interest to researchers for many years.

Useful references to a portion of a large body of recent

work with metallic posts are given in [1]. Dielectric posts,

however, have attracted less attention, and the few treat-

ments available deal exclusively with circular posts.

Marcuvitz [2] has by variational method calculated the

parameters of the equivalent circuit for a circular dielectric

post discontinuity in a rectangular waveguide. The results

were fairly accurate for dielectric posts of relatively thin

diameter situated at the center of the waveguide, provided

that neither of the equivalent circuit parameters was close

to resonance. Nielsen [3] has overcome some of these

limitations by developing a theory based upon the method

of expanding the field in a sum of modes. His method, too,

is applicable only to circular centered posts but is extended

to posts of any size and complex permittivity. Nielsen also

improved the results near resonance. Recently, Araneta

et al. [4] presented a higher order variational model for

centrally placed dielectric rod of circular cross section.

Their model has no restrictions on the rod diameter, and it

also shows an improved representation near resonance. A

subsequent paper by Sahalos and Vafiadis [5] suggested a

procedure similar to that given by Nielsen [3] using a

circular rather than rectangular interaction region. Their
model permits the analysis of circular posts in the middle

of a rectangular waveguide and renders the results near

resonance very accurate. The main purpose of this paper is

to devise a procedure which is accurate, simple, and gen-
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eral in that inductive posts, lossless as well as lossy, of

arbitrary smooth shape, size, location, and number can be

handled effectively. The study of dielectric posts is not

solely of academic interest; it has practical importance as

well. Nowadays, several high-permittivity, high-Q, temper-

ature-stable, low-cost ceramic compositions have been de-

veloped. With this combination of desirable properties,

they can replace conventional copper and Invar waveguide

filters in almost all applications. In fact, dielectric filters

have already been used in radio system ranging from 1.7 to

11 GHz, and their application is expected to grow rapidly

in the future [6].

A short while ago, the problem of electromagnetic

scattering by perfectly conducting inductive posts in rect-

angular waveguide was facilitated via an efficient and

fairly simple moment solution [7], [8]. The suggested idea

is to use a filamentary current as an approximate current

source producing the field scattered by the post and a

point-matching procedure for the boundary condition at

the post surface. Specifically, the post is replaced by a set

of unknown current filaments placed on or inside the post

surface, the latter being usually preferable since it yields a

more rapidly converging numerical solution. A point-

matching of the boundary condition at the post surface is

imposed and the unknown current filaments are de-

termined. These currents in turn are used to evaluate other

subjects of interest, such as the equivalent circuit parame-

ters and the actual surface-induced current.

In this paper, attention is focused on the class of dielec-

tric inductive posts. The basic formulation introduced

deals exclusively with a single inductive dielectric post.

The formulation for structures that seem to be more

complicated, such as the post array, requires only trivial

modification of the basic one and, for the sake of brevity,

is not presented in the following analytical exposition. Our

main objective is to extend the above-described analysis to

handle homogeneous dielectric inductive posts using a

multifilament current model. In treating inductive dielec-

tric posts, one option is to utilize the standard procedure,

which expands the actual polarization current induced in

the dielectric in terms of suitable basis functions and then

point-matches the constitutive relationship at points inside

the post. This approach, however, involves a Fredholm

integral equation of the second kind in which the unknown

current appears both under the integral sign and explicitly

outside the integral sign. Therefore, filaments would not be

suitable expansion functions if the point-matching proce-
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Fig. 1. Inductive dielectric post of arbitray shape in a rectangular
waveguide.

dure is to be used for testing. In this case, one may expand

the polarization current in terms of pulse functions and

use point matching for testing. As a matter of fact, this

approach is currently being considered by Hsu and Auda

[9]. Such a procedure, however, involves a volumetric

integral equation which, in conjunction with the rather

slowly converging Green’s function, typically associated

with waveguide discontinuity problems, would seriously

tax the computing system. The other option is to employ

two separate sets of filamentary currents as approximate

current sources which simulate, respectively, the field

scattered by the post and the field inside the post and then

point-match the continuity conditions for the tangential

components of both the electric and the magnetic field

across the post surface. This latter approach seems to be

more favorable and will be the one considered in this

work.

II. PROBLEM SPECIFICATIONS

The physical configuration of the problem under study

is shown in Fig. 1, together with the coordinate system

used. Here, we consider a cylindrical waveguide of rectan-

gular cross section in which an inductive dielectric post is

situated. The width of the guide is a and its height is b.

The guide walls are perfect conductors and it is filled with

a homogeneous medium of constitutive parameters p. and

c~. The post is of arbitrary smooth cross section and is

composed of homogeneous material with permeability pp

= p. and perrnittivity CP. Dissipation in the waveguide

region is not accounted for; thus, p ~ and ~~ are consid-

ered real. For future convenience, we refer to the wave-

guide region external to the post as region W, to the post

region as region 1’, and to the post surface as S.

The wave incident upon the post is the dominant TEIO

mode traveling in the positive z direction. An exp ( jtil)

time dependence is assumed and suppressed. We confine

our consideration to a frequency band within which the

TEIO is the only propagating mode. Because the electric-

field vector of the incident mode has only a y component,

which is independent of y, and since the properties of the

post, both physical and electrical, are uniform along the y

direction, the total field in the waveguide does not vary

with y. The problem thus reduces to a two-dimensional

one.

Our main goal is to determine the field scattered by the

post. By definition, the field scattered by the post is the

actual field in the ambient waveguide region minus the

x
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Fig. 2. Simulated equivalence for region W.
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Fig. 3. Simulated equivalence for region P.

incident field. Once the scattered field is hewn, a calcula-

tion of the scattering matrix and subsequently of the

equivalent network parameters for the post two-port junc-

tion is straightforward.

III. SIMULATED EQUIVALENT SITUATIONS

We now divide the original situation into two simulated

equivalent situations. In the first situation, we simulate the

electromagnetic field in the waveguide region W. In the

second situation, we simulate the electromagnetic field in

the post region P.

In the simulated equivalence for region W shown in Fig.

2, the post is replaced by a fictitious surface current

distribution Jw placed on a closed surface enclosed in S.

This current is y-directed and independent of the spatial y

direction. Jw is treated as a source current in a homoge-

neous waveguide region filled with a medium of con-

stitutive parameters p ~ and c~. In Fig. 2, (E’, H‘)’ is

the electromagnetic field due to the current J“, and

(Einc, H ‘nc) is the electromagnetic field of the incident

TEIO mode, both calculated with the post absent. The total

field (Ew + Einc, H“ + Hint ) in region Win the simulated

equivalent situation for region W is simulating the field in
region W’ in the original situation.

In the simulated equivalence for region P shown in Fig.

3, the waveguide region surrounding the post is replaced

by a fictitious surface current distribution Jp placed on a

closed surface enclosing S. This current is y-directed,

infinite in extent in the y-direction, and independent of
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the spatial y-direction. Jp is treated as a source current in

an unbounded space filled with homogeneous material

identical to that composing the post. The field (E~, Hp ) in

region P in the simulated equivalent situation for region P

shown in Fig. 3 is simulating the field in region P in the

original situation.

Note that in both Figs. 2 and 3, filamentary currents Jw
and Jp are depicted, respectively. These are already par-

ticular choices of the approximations for J“ and Jp that

will be introduced below and used thereafter.

The relationship between the electromagnetic fields

(l?w + E’”’, l%”+ Hi”’) and (Ep, Hp) in the simulated

equivalent situation shown in Figs. 2 and 3, respectively, is

dictated by the boundary condition at the post surface in

the original problem shown in Fig. 1. Specifically, the

tangential components of the electric and magnetic fields

must be continuous across S. This leads to the operator

equations

fiX(Ew- Ep)=-fi XEinc on~ (1)

ii X( Hw-Hp)=-fix Hinc on S (2)

where ii is a unit vector normal to the post surface S and

pointing towards the waveguide region, as shown in Fig. 1.

Evidently, if current distributions Jw and Jp were found

which satisfy conditions (1) and (2), then (E’, H w) would

be the exact field scattered by the post and (Ep, Hp)
would be the exact field inside the post. With this goal in

mind, J“ and Jp are first approximated by a finite

number of expansion functions. Specifically Jw is ap-

proximated by a set of N“ y-directed filaments of yet

unknown constant current { l,W}, i =1,2,. . s, N‘, situated

on a contour inside S as shown in Fig. 2, and Jp is

approximated by a set of NP y-directed infinitely long

filaments of yet unknown constant currents {I?}, i =

1,2,..., NP, situated on a contour outSi& S as shown in

Fig. 3. It is noteworthy that both the inner contour on

which the { I,w } are situated and the outer contour on

which the {l? } are situated are arbitrary as far as the

formulation is concerned, The question of selecting con-

tours suitable for numerical computation will be discussed

in Section V, Next, the two continuity conditions (1) and

(2) are either strictly imposed at N’= *(NW+ Np) selected

points on S or are imposed, in the least-square-

error sense, at N’> *(N w + NP ) selected points on S. The

result is a matrix equation which can be subsequently

solved for { liw } and {I:}. Once the currents are known,

approximate values for the various fields and other param-

eters of interest can be readily found.

It should be remarked that from a strict mathematical

point of view, we cannot, in general, guarantee the ex-

istence of current distributions J“ and Jp on arbitrarily

selected inner and outer surfaces which produce the true

fields in the respective regions. The existence question,

which is an important one, is currently under investigation

and will be reported in a forthcoming paper. For present

purposes, suffice it to say that although (1) and (2) might

not have a mathematically admissible solution for certain

choices of inner and outer surfaces, they can nevertheless

constitute a suitable formulation for a numerical solution.

The reason for this is intimately related to the fact that the

finite set of impulsive basis functions defined on the

moved-away surfaces can be interpreted as a finite set of

entire domain functions defined on S. In this sense, our

basis is as appropriate as other entire-domain bases on S

commonly employed in moment solutions for scattering

problems. The advantage here lies in the representation of

smooth quantities on S using impulsive sources whose

fields are easily evaluated.

IV. FORMULATION

In this section, expressions for the various electromag-

netic fields introduced in the preceding section are pre-

sented.

A. Expressions for E’nc and H ‘“c

The incident electromagnetic field (Efic, H ‘“C) is ex-

pressed as

E ‘“’= uyEykc (3)

H ‘*C= uxHxtic + uzHztic (4)

where

E? = sin ?e–]k=l. (5)
a

(6)

Here, kw = am and qW= ~= are, respectively, the

wavenumber “and intrinsic impedance in the waveguide

region. Also, k,l is the modal wavenumber of the propa-

gating TEIO mode given by

(8)

B. Expressions for E w and H w

The electromagnetic field (E’, H w) due to the current

filaments I,w, i = 1,2,.00, N‘, radiating in region w with

the post absent is expressed as

(9)

N“

Hw=ux ~ H1:+uZ ~“Hi;. (lo)
~=1 1=1

In (9)

kwqwI,” ~ 1
E,; = – a X ~sin ? sin~e-’k’”’’-z:’

?n=l Zm

(11)

is the intensity of the y-directed electric fields at observa-

tion point (x, z) in region W due to current filament 1,”

situated at (xZW,z,’”). Here kzm are the modal wavenumbers
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given by

‘m=-Jm
[12)

for m #1 and by (8) for m =1. Unfortunately, the series in

(11) converges slowly and is therefore not convenient for

computation. Following the approach outlined in [5], we

convert it to

E,y = Siy + S;” (13)

where S,~ is the rapidly convergent summation

m 7rx,w
.sin — sin = (14)

a

and Si>w is the auxiliary series

m 7rx
“sin _.._e-(fwdlz-z:l (15)

a

that, when summed in closed form, reduces to

S;) . –
2T ‘e(ln(H}‘1’)

jkwqwIiw

with

C, =exp( j~[(x-x~)+ jlz - z~l]) (17)

Di=exp(j~[(x+x~ )+jlz-z~l]). (18)

In (10)

are the x and z components of the magnetic field at

observation point (x, z) in region w due to current fila-

ment llw situated at (xT, Zlw). The upper sign in (19) is for

z > ZIW while the lower sign is for z < Z,w. The series (19)

and (20) are also slowly converging. Following the scheme

outlined in [6], we convert them to

Hi; = SiZ + S;w (22)

where SIX and S,z are the rapidly convergent summations

m 7rxZw
.sin — sin % (23)

a

and

m 7TX,W m 77x
.sir — Cos —. (24)

a a

Here S&U and S~” are the two auxiliary series

that, when summed in closed form, reduce to

Iw

{

Ci – Di
S&U= +&Re

(1- Ci)(l - Di) }
(27)

S~” = ~ Im
(

D, – c,

(l- C1)(l-D1) }
(28)

with C, arid D, given, respectively, by (17) and (18).

C. Expressions for Ep and Hp

The electromagnetic field (Ep, Hp) due to the current

filaments l!, i =1,2, 0.0, N~, radiating in an unbounded

space of constitutive parameters

pressed as

NP

Pp and 6P can be ex-

(29)

NP

(31)

is the intensity of the y-directed electric field at observa-

tion point (x, z) in region p due to current filament I!

situated at (x?, z:). Here, kp = ufi and qP = ~~

are the wavenumber and intrinsic impedance, respectively,

of the medium in region P. Also, H~2) is the Hankel

function of the second kind of zero order and r? is given

by

r,p= (x–xf)2+(z-zf)2. (32)

In (30)

k ~p(z–zf) ~
~;= p’

‘)H/ )(kPri
4 jr;

(33)

and

H:= ‘) (34)
kP1~(x~ –‘) Hf2)(kprt

4jrip

are the x and z components of the magnetic field at

observation point (x, z) in region p due to current fila-

ment I? situated at (x?, zf). Here, H~2) is the Hankel

function of the second kind of first order.
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D. Evaluation of the Unknown Currents {I?} and {1/}

Following the procedure outlined toward the end of

Section III, we reduce the functional conditions (1) and (2)

to a matrix form in which the various matrices are inter-

preted in terms of generalized network parameters. The

result is

[Z]r=r (35)

where

(36)

(37)

(38)

[Z] is a 2N’ by (Nw + NJ’) matrix called the generalized

impedance matrix, 1+ is an ( N w + NP)-element column

vector called the generalized unknown current vector, and

~ is an 2NS-element column vector called the generalized

voltage source vector. In (36), [ Z~] is an N’ by N w matrix

whose (1, i) element is the electric-field intensity Ei~ due to

a filament Ilw of unit current evaluated at (xz, Zl) on S.

Similarly, [2:] is an N’ by N~ matrix whose (1, i) element

is the negative of the electric-field intensity E& due to a

filament 1! of unit current evaluated at (x~, Zl) on S. The

matrix [Z:] is an N’ by N w matrix whose (1, i) element is

the tangential magnetic-field intensity due to a filament 1,”

of unit current evaluated at (X1, Zl) on S. Similarly, [Z;] is

an N’ by N~ matrix whose (1, i) element is the negative of

the tangential magnetic-field intensity due to a filament 1:

of unit current evaluated at (xl, Zl) on S. In (37), ~w is an

N“’-elegent column vector whose ith element is 1,”. Si~-
larly, 1P is an NP-element col~mn vec~or whose i th ele-

ment is I:. Finally, in (38), V, and Vh are N’-element

column vectors whose lth elements are, respectively, the

negative of E~ and the negative of the tangential mag-

netic-field intensity at observation point (xl, Zi) on S.

Having formulated ~he matrix equation (35), the un-

known current vector 1 can be solved for in a straightfor-

ward manner. If the boundary conditions are forced at

N’= $ (N w + NP) selected points on S, then [Z] is usually

one-to-one and onto.1 In this case, [Z] is invertible and the

unique solution to (35) is readily given by

(39)

where [Z] - I is the inverse of matrix [Z]. If, on the

other hand, the boundary conditions are forced at N’ > ~

(Nw + N~) selected points on S, then [Z] is usually one-

to-one but not onto.1

In this case, unless ~ is in the range [Z], there is no

exact solution to (35). If ~ is not in the range of [Z], we

1[ Z] is one-to-one if [Z] does qo~ assign more than one vector ~ in the
domain+of [ Z] to a single vector V m the range of [ Z] [ Z] is onto ~,every
vector V m the range of [Z] is associated with at least one vector I m the
domain of [ Z].

pursue the smallest least-square-error solution to (35), that

is, the one which minimizes the standard norm of the

vector [Z] 1-– ~. This solution of (35) is known to be

7= ([2]* [z]) -l[q*; (40)

where the matrix ([~] *[Z]) - 1[~] * is the pseudoinverse of

the matrix [Z]. Here, [~] is the transpose of [Z] and the

asterisk denotes complex conjugate.

E. Scattering Matrix and Equivalent Circuit

Once the unknown current vector is derived from either

(39) or (40), one can readily proceed to evaluate the

scattering matrix [Sp ] for terminal planes z = O- and

z = O‘, which constitute the post two-port junction. For

this purpose, consider two reference planes T1 and Tz
placed, respectively, on z = z~l, z~, < min { ZIZ = S }; z =

ZTZ, z~~> max { z Iz = S}. Assume also that T1 and Tz are

sufficiently distant from the post surface so that contribu-

tions of nonpropagating modes to the fields there may be

neglected altogether. Further, assume that the distance to

each of the planes from the z = O plane is an integral

multiple of the guide wavelength. In accordance with this

choice, the scattering matrix for planes T1 and Tz becomes

identical to [ SP]. Hence, the elements Sfl and S~l of the

latter are derivable in term of the following defining

equations:

(41)

(42)

where EN I~, and Ey!?cI~, are, respectively, the incident

electric-field intensities at planes T1 and Tz, and E;\ ~1and

E; IT, are, respectively, the intensities of the y-directed

scattered electric field at planes T1 and Tz.
To evaluate E;[ ~, and E~l T,! one simply applies (5) to

planes T1 and T2, obtaining

- (43)

(44)

To compute E; IT, and ~~ I~,, one can employ two alterna-

tive but, in a sense, equwalent schemes, One option is to

simply evaluate the scattered electric field by applying (9)

to T1 and Tz while retaining only dominant-mode contri-

butions. The result is

The other option is to first calculate the total electric field

in the post region by (29), which determines the polariza-

tion current density YP”l within the dielectric body accord-
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ing to

JPO1--~ JpO1=j~(cp–cw)Ep.
Y

(47)

Treating this polarization current as a source current in a

homogeneous waveguide region which generates the

scattered field and applying the result to TI and Tz while

retaining only dominant-mode contributions, we obtain

kWqWsin~

E;IT1 = –
a

kzla J.i
.Pyx’, z’)

post
crosssection

sin ~e-’k’” dx’dz’ (48)

kWqWsin E

E;IT, = –
a

kzla // Jpo’(x’!z’)
post
crosssection

Ilx ‘
. sin — ~J’.lZ’dxfdzf. (49)

a

We turn to the remaining elements of the scattering

matrix. In most practical situations the junction is recipro-

cal and therefore Sfz = S~l. To determine S]?, one can

construct a new situation by rotating the post by 1800

around the x-axis and then evaluate Sfl according to the

preceding procedure. Now, Sfl in this new situation is

identical to S~’ of the original situation. In many cases,

however, there is no need whatsoever to repeat the mo-

ment procedure in order to calculate S;!. In these cases,

S:2 is readily expressible in terms of Sfl and S~l. For a
post symmetric with respect to the z = O plane, S~z is

clearly equal to Sfl. For a lossless junction, [S~] is a

unitary matrix, that is

[sP]-’= [jP]* (50)

or explicitly

Is/,1’ + Is]ll’ =1 (51)

lsf21’+ls:,l*=l (52)

and

sfls~l* + s~ls&* = 0. (53)

In view of (53), we find that

(54)

A knowledge of the scattering matrix [S~] permits a

rather straightforward calculation of its corresponding im-

pedance matrix [ ZP]. The relation between the two matrices

is

;[Z’] = -([sq+[u])([sq- [u])-’ (55)

Zb =Rb+JXb Zc = Rc+jXc

0

i 1

0

~,o- ~=(’+

Fig. 4. Typicaf equivalent circuit for the inductive post discontinuity.

that if the post is symmetric with respect to the z = O plane

we have

Zc=zb. (56)

V. NUMERICAL RESULTS

Computer programs have been prepared to carry out the

analysis of the preceding sections. Listings are included in

[10]. The programs are general in that inductive posts of
arbitrary shape, location, and complex permittivity can be

handled.

To check the program, we consider the few cases for

which data are available. Hence, we focus our attention on

the case of a circular dielectric post of diameter denoted

by d (radius denoted by r) centered at (x, z) = (a/2, O) in

a hollow (pW =~O,EW = E~) waveguide, which has been

treated by Marcuvitz [2], Nielsen [3], and recently by

Araneta et al. [4] and Sahalos and Vafiadis [5]. Another

means of error estimation is available if it is stipulated that

the post is lossless. In this case, [SP] is a unitary matrix

and conditions (51) through (53) must be satisfied simulta-

neously. Finally, a few limiting cases are considered and

the degeneration of the results to the proper values is

confirmed.

We stated earlier that if the boundary conditions (1) and

(2) are satisfied by the Maxwellian and source-free (in

their respective regions) fields (E’, H‘) and (Ep, Hp),
then these fields are the true fields. Here, however, we

force these conditions to be obeyed only at a finite number

of selected points on the common boundary between re-

gions W and P. Naturally, one can question the behavior

of the fields on the boundary between the matching point.

This is because they can in general be quite different from

what is required by the boundary conditions, thereby

rendering the results for the field values in the two regions

inaccurate. To address this question, we carry out a study

of the convergence of the boundary condition

and AH defined by

*E=lfix(E” +Ekc-E’)lonS

IEincIm=

*H= lfix(H”+H’”C -H’)lons

lHinclmm
where [U] is the unit matrix and 20 = k ~q ~ /kzl is the

characteristic impedance of the propagating TEIO mode.

As a matter of convention, this impedance matrix is pre-

sented by the lumped T-network shown in Fig. 4. Note = -

errors AE

(57)

(58)

as a function of the azimuthal angle @ for a centered post

of en = 4C0, d/a = 0.2, and a = A/1.4. We examine the
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4
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$ (degrees)
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Fig. 5. (a) Boundary condition error A E versus I#J for a centered
circular post (6P = 4 co, d/a = 0.2, a = A/1.4) for various numbers of
sources and matching points N. (b) Boundary condition error AH
versus @ for a centered circular post (CP = 4C0, d/a = 0.2, a = A/1.4)
for various numbers of sources and matching points N.

special choice of an equal number of inner sources N‘,

outer sources NP, and matching points N’. We denote this

common number by N. The inner sources { 1,”} are placed

on a circular surface of radius r,W= 0.5r and the outer

sources {I? } are placed on a circular surface of radius

r,~ = 2r. Both the sources and the matching points are

evenly spaced on their respective surfaces. The angle r#I

here is the azimuthal angle in an auxiliary cylindrical

coordinate system with a z axis coinciding with the post

axis and an x axis coinciding with the x axis in Fig. 1.

Hence, the interval from 00 to 1800 on @ is in the

“shadow” region of the post surface, while the interval

from 1800 to 3600 on @ is in the illuminated region. Plots

of A E and AH for various values of the parameter N are

presented in Fig. 5. Cases considered are N =8, 10, 12,

and 14. The boundary condition errors A E and AH which,

by conditions (1) and (2), are zero at the matching points
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Fig. 6. (a) Normalized reactance X. /ZO versus the number of sources
and matching points N for a centered post (6P = 4 CO, d/a = 0.2,
a = A/1.4). (b) Normalized resistance R./Z. versus the number of

sources and matching points N for a centered post ( EP= 4 co, d/a = 0.2,
a = A/1.4).

increase smoothly and reach a maximum on the surface S

between the points. As the number of matching points

increases, the maxima of AE and AH on the surface fall

sharply. Note that even for N as small as 14, the maximum

of AH, which is much larger than the maximum of A E, is

smaller than 0.1 percent. The nature of convergence seen

here is similar in other cases involving posts of other radii

and perrnittivities and in cases where the sources are

placed on other surfaces. The rate of convergence, though,

may be different. To give some additional information on

the convergence as the number of expansion functions and

matching points is increased, Fig. 6 depicts plots of the

normalized reactance Xa /ZO and the normalized resis-

tance R ~/Z. versus N for the post of Fig. 5. Note that

here for N as small as 14, the numerical solution for

X. /ZO converges to an adequate engineering solution,

while the solution for R ~/Z. converges appropriately to

zero, as expected in this lossless case. The rate of conver-

gence is similar for the plots of X~/ZO and Rb/Zo, which
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are not shown here, and of a similar nature in other cases

as well.

The choice of the filamentary sources location may also

affect the rate of convergence. Studies have shown that the

results converge faster to a limiting value when the sources

are situated on contours concentric with S and of figures

similar to S. For the circular post, this implies that the set

{l: } is placed on a circular surface of radius rfl, while the

set {l? } is placed on a circular surface of radius r,p. In
addition, it is found that any selection of r,w between 0.2r

and 0.8r and of rf greater than 1.5 virtually does not

affect the rate of convergence. In contrast, the rate of

convergence deteriorates when the inner sources approach

either the post center or the post surface, and when the

outer sources approach the post surface.

So far, we brought up cases in which the two continuity

conditions (1) and (2) are strictly imposed at the matching

points on S. Another option attempted was to impose

these conditions in the least-square-error sense at selected

points on S with a view to obtaining similar accuracies
using fewer sources, thereby gaining the advantage of

inverting smaller matrices. For example, the same accuracy

stabilized with N = NP =14 sources, and N’ =14 match-

ing points in a strict solution of the post of the previous

case is stabilized with N w = NP =12 sources and N’= 16

matching points in a least-square-error solution. Notice

that while the former requires an inversion of a 28X 28

matrix, the latter requires only an inversion of a 24X 24

matrix.

In summary, it should be apparent that it is impossible

to state a rule of thumb as to the choice of the source’s

location and number, since the number of parameters

involved is very large. However, it is evident and under-

standable that a large post of high permittivity will natu-

rally require more sources than a smaller one of lower

permittivity in order to achieve the same level of accuracy.

We wish to emphasize that even for choices less than

optimal in the source’s location, the solution eventually

converges to the appropriate limiting values as the number

of sources and matching points increases. This conver-

gence might, however, be less rapid compared with other
choices. Clearly, in any event one should test the solution

by increasing the number of sources and matching points

and comparing the results. If the results are sufficiently

close, the solution is taken as satisfactory. Attention should

also be recalled to the summations in (14), (23), and (24).

As a practical necessity, a truncation of these infinite series

is required. With this in mind, the program divides each

series into ten-term sets and subsequently sums up these

sets as long as the ratio between the sum of the last

ten-term set and the total sum of all the sets considered up

to that point is larger than a suitably prescribed threshold.

As stated earlier, the resultant error can be quantitatively
estimated, in the loss-free case, from the unitary conditions

(51)-(53). Finally, with regard to the two options (45), (46)

and (48), (49) mentioned to compute E;, studies have

shown that they give identical results. For the final results

presented in this paper, we favor the simpler one and

compute E; using (45), (46).

TABLE I
COMPARISON BETWEEN COMPUTED NORMALIZED RSACTANCES

Xa /Z. AND Xb /ZO VERSUS ~ AND MARCUWTZ’S

DATA FOR A CENTERSD POST (d/a= 0.1, a = A/1.4)
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Fig. 7. Reflection coefficient magnitude 1,S~lI versus 6P/cO for a

centered post (d/a = 0.1, a = A/1.4).

In view of the large number of parameters involved in

the general procedure, we will limit the data display to

only a few illustrative examples. A comparison between

our computed normalized reactance X./20 and X~/ZO

r
versus t /c ~, and Marcuvitz’s data [2] for d/a = 0.1 and

a = A/1.4 is presented in Table I. As expected, the results

agree with each other fairly well for many values of ~~

but differ significantly in cases where X~/Zo is close to

resonance, for which Marcuvitz’s results, as pointed out by

Marcuvitz himself,. do not apply. The behavior of the

corresponding reflection coefficient for this case has been
recently investigated by Sahalos and Vafiadis [5], who

compared their data with those of Marcuvitz [2], Nielsen

[3], and Araneta et al. [4]. It is observed from Fig. 4 of [5]

that the various results agree with each other in many

regions but appear to be different near the resonance. Our

computed results, depicted in Fig. 7, concur with Sahalos
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Fig. 8. (a) Three-dimensional picture of the polarization current distribution induced in a centered dielectric post of radius
r = 0.1a, a = A/1.4, and permittivity 6P=10 co. (b) Three-dimensional picture of the polarization current distribution
induced in a centered dielectric post of radius r-= O.la, a = A/1.4, and permittivity CP=100 co. (c) Three-dimensional
picture of the polarization current distribution induced in a centered dielectric post of radius r = 0.2a, a = A/1.4, and
permittivity (P = 1006..

and Vafiadis’s data. Our numerical procedure also shows lustrative three-dimensional pictures of the magnitude of
the resonant condition at a dielectric constant of CP= Jp”l for various cases are shown in Fig. 8. It should be

112.5~0. It should be emphasized that our method is ap- emphasized that the convergence of the results for the field
parently more powerful since it is not limited to the case of values in each region to their limiting values as the number
a circular centered post but is rather general in that posts of sources and matching points is increased is similar to
of arbitrary smooth shape, size, location, and number can the convergence of the boundary condition errors to zero.
be handled effectively. In the results for the polarization current calculated from

Another parameter of interest is the polarization current the field value in region P, the limiting value is reached

distribution within the dielectric post. This current can be within less than O.1-percent error. Note that the polari-

readily evaluated via (47) once the electric field Ep due to zation current intensity varies in magnitude and that these

the current filaments l?, i =1,2, c. . . NP, is known. 11- variations become appreciable as the post gets thicker and
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Fig. 9. (a) Normalized reactance Xa/Zo versus c’ /60 for a centered
lossy post (c; = 4C0, a = A/1.4). (b) Normalize cf resistance R./Z.
versus $ /cO for a centered lossy post (c; = 4 co, a = X/1.4).

as its permittivity becomes higher. This behavior is due to

the variation of the electric-field intensity in the dielectric

region to which J p“’ is related through (47). The variation

of the electric field in the dielectric region is not surprising

as it can be found in similar but nevertheless different

situations involving scattering by dielectric cylinders [11],

[12]. Thus, poor accuracy is to be expected if the polar-

ization current is calculated approximating the electric

field in the dielectric by the slowly varying field of the

incident TEIO mode. Obviously, if the fields scattered by

the post are computed from these current distributions as
source currents and from the inner filamentary currents as

source currents, virtually identical results are obtained.

Lossy dielectric posts are handled by the use of complex

permittivities. Hence, we let CP= c~ – je~ with c; and c;

real. Figs. 9 and 10 show, respectively, plots of normalized
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Fig. 10. (a) Normalized reactance Xb/ZO versus d /c. for a centered
lossy post (c; = 460, a = A/1.4). (b) Norrnalizerf resistance Rb /Z.
versus $ /[0 for a centered lossy post (c; = 4C0, a = k\l.4).

reactance Xa/ZO and X~/ZO and resistances R. /ZO and

R.b/Zo as a function of c; for centered post of d/a = 0.1,

with c; = 4~0 at A/a =1.4. Note that in the two limiting

cases, namely, ~~ -0 and c; ~ co, the results for the

lossless post shown in Table I and for the perfectly con-

ducting post given in [7] are, respectively, recovered. Fig.

11 exhibits the variation of the left-hand side of (51) as a

function of e; for the lossy post. The graph shows that in

the two above-mentioned limiting cases, the value 1 is

approached in accordance with the power conservation law

that must be satisfied in these particular instances. Ob-

serve that in this situation post losses appear to have

reached a peak value at ~~ =19.56 ~. Notice also the abrupt

change in the magnitude of each of the reactance and

resistances of Figs. 9 and 10 that occurs at c) =19.56 ~,

which ,results in the sharp falloff in post losses seen in Fig.

11.

The extension of the preceding formulation to encom-

pass cases involving multiple-post, say M, obstacles is

straightforward. In these cases, the field in the waveguide
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Fig. 12. Transmission coefficient versus frequency for a two-element

centered dielectric post configuration ( eP = 460, d/a = 0.1, a = A/1.4).

is simulated by the field of M sets of sources, each situated

inside its corresponding post. The field inside each post is

simulated, as before, by the field of an appropriate set

situated outside that post. Boundary conditions must be

subsequently applied at selected points on the M post

surfaces. Fig. 12 shows computed transmission coefficient

data for a two-element centered dielectric post (A/a= 1.4,

d/a = 0.1, CP= 4CO) as a function of frequency. Here, the

spacing between the post axes along the z direction has

been determined to yield resonance (complete transmis-

sion) at ~0 neglecting the higher order mode interactions

between posts, that is, obtained by cascading single-post

equivalent circuits. The curve, however, corresponds to

results obtained, including high-mode interactions as well.

Observe that there is no appreciable difference between

the resonance location in the curve and the computed one.

This is due to the fact that in the case shown we are

dealing with thin posts of relatively low permittivity; thus,

higher order mode interactions may be neglected. In other

cases, however, such as thick posts of high permittivity

which render the frequency response high Q, the higher

modes must be accounted for.

VI. DISCUSSION

A complete analysis of dielectric post structures of the

inductive type in rectangular waveguides has been facili-

tated via a simple, accurate, rapidly converging moment

procedure. The solution uses one set of filamentary cur-

rents to simulate the field scattered by the post, another set

to simulate the diffracted field inside the post, and a

testing procedure for imposing the continuity conditions

for the tangential components across the post surface. The

procedure is general in that inductive dielectric posts of

arbitrary smooth shape, size, location, and number can be

handled effectively. Lossy posts have also been considered.

The computed results show very good agreement with

Sahalos and Vafiadis’s data. They also give proper results

in several limiting cases. In the absence of the dielectric

post (Ep = 6W), S(I and S~l approach, respectively, the
correct values O and 1. Also, as Im (~P) a – co, the results

of [7] for the perfectly conducting post are recovered. The

advantage of our method over the previously suggested

ones is its generality. While these methods are applicable

to a single centered post of circular cross section, our

method can handle an array of any number of posts,

lossless as well as lossy, of arbitrary smooth shape and

location.

The accuracies achievable by this theoretical model are

indeed excellent with respect to engineering needs. The

suggested procedure is applicable to a variety of micro-

wave dielectric discontinuities of the inductive type and

can thus prove useful in the analysis and synthesis of

waveguide components built of newly developed ceramic

compositions.

An extension to encompass dielectric discontinuities of

the dual-capacitive type requires changes but appears to be

straightforward. Since each post is uniform along the x

axis, and since the exciting mode has an x component of

magnetic field that varies as sin ( mx/a ) and no x compo-

nent of electric field, only TEI. to x modes will be excited

in the waveguide. Thus, one can readily use sets of x-

directed magnetic current filaments that vary as sin(n x/a)

to simulate the fields scattered by the post and the field

inside the post, and subsequently match the boundary

conditions in some x = constant plane within the wave-

guide.
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